# A linear programming approach to Fuglede's conjecture in $\mathbb{Z}_p^3$

# R. D. Malikiosis



September 19th, 2025

International Conference on Tiling and Fourier Bases Xidian University, Xi'an, China

The author's research is funded by HFRI, Project no. 14770, HANTADS





# Spectrality

$$f \in L^{2}(\Omega)$$

$$\int_{\Omega} e^{i(\lambda - \lambda') \cdot x} dx = 0, \quad \lambda \neq \lambda'$$

$$f(x) = \sum_{\lambda \in \Lambda} a_{\lambda} e^{i\lambda \cdot x}$$

$$\Omega$$

# Fuglede's Conjecture (1974)

Tiling $\iff$ Spectrality in  $\mathbb{R}^d$ 

# Fuglede's Conjecture (1974)

Tiling $\Longleftrightarrow$ Spectrality in  $\mathbb{R}^d$ 

# Spectrality ⇒ Tiling (Tao '04)

Counterexample in  $\mathbb{R}^5;$  follows from the abundance of  $6\times 6$  complex Hadamard matrices.

# Fuglede's Conjecture (1974)

Tiling $\iff$ Spectrality in  $\mathbb{R}^d$ 

# Spectrality → Tiling (Tao '04)

Counterexample in  $\mathbb{R}^5;$  follows from the abundance of  $6\times 6$  complex Hadamard matrices.

This direction fails for  $d \ge 3$  (Kolountzakis, Matolcsi '06).

# Fuglede's Conjecture (1974)

Tiling $\iff$ Spectrality in  $\mathbb{R}^d$ 

# Spectrality∌Tiling (Tao '04)

Counterexample in  $\mathbb{R}^5$ ; follows from the abundance of  $6\times 6$  complex Hadamard matrices.

This direction fails for  $d \ge 3$  (Kolountzakis, Matolcsi '06).

# Tiling∌Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in  $\mathbb{R}^5$ ; also fails for  $d \geq 3$  (Farkas, Matolcsi, Móra '06).

# Fuglede's Conjecture (1974)

Tiling $\iff$ Spectrality in  $\mathbb{R}^d$ 

## Spectrality∌Tiling (Tao '04)

Counterexample in  $\mathbb{R}^5$ ; follows from the abundance of  $6\times 6$  complex Hadamard matrices.

This direction fails for  $d \ge 3$  (Kolountzakis, Matolcsi '06).

# Tiling⇒Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in  $\mathbb{R}^5$ ; also fails for  $d \geq 3$  (Farkas, Matolcsi, Móra '06).

Observation:

a counterexample of  $S\Rightarrow T$  or  $T\Rightarrow S$  in a finite Abelian group with d generators can be lifted to a counterexample in  $\mathbb{R}^d$ 

# Fuglede's Conjecture (1974)

Tiling $\iff$ Spectrality in  $\mathbb{R}^d$ 

## Spectrality∌Tiling (Tao '04)

Counterexample in  $\mathbb{R}^5;$  follows from the abundance of  $6\times 6$  complex Hadamard matrices.

This direction fails for  $d \ge 3$  (Kolountzakis, Matolcsi '06).

## Tiling⇒Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in  $\mathbb{R}^5$ ; also fails for  $d \geq 3$  (Farkas, Matolcsi, Móra '06).

Observation:

a counterexample of  $S\Rightarrow T$  or  $T\Rightarrow S$  in a finite Abelian group with d generators can be lifted to a counterexample in  $\mathbb{R}^d$ 

Fuglede's conjecture is still open for d=1,2. It is true for convex bodies (Lev, Matolcsi '22).

## Discrete Fuglede Conjecture

#### Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

#### Discrete Fuglede Conjecture

#### Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

A tiles if there is another subset T (the *tiling complement of A*), such that each element of G can be expressed uniquely as a+t, with  $a \in A$ ,  $t \in T$ . Notation:  $A \oplus T = G$ .

#### Discrete Fuglede Conjecture

#### Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

A tiles if there is another subset T (the *tiling complement of A*), such that each element of G can be expressed uniquely as a+t, with  $a\in A$ ,  $t\in T$ . Notation:  $A\oplus T=G$ .

A is spectral if there is a set of characters  $B \subset \hat{G}$  that form an orthogonal basis on  $L^2(A)$ .

# Results on Discrete Fuglede Conjecture (≤ 2 generators)

#### Cyclic groups $\mathbb{Z}_N$

- ① If  $N = p_1^m p_2^n p_3 \cdots p_k$ , then  $T \Rightarrow S$  (Łaba, Londner '22).
- ② If  $N = p_1^2 p_2^2 p_3^2 p_4 \cdots p_k$ , then  $T \Rightarrow S$  (Łaba, Londner '25).
- If  $N = p^m q^n$  and one of the following holds:
  - p < q and  $m \le 9$  or  $n \le 6$ , •  $p^{m-2} < q^4$ ,
    - then  $S \Rightarrow T$  (M. '22).
- If N = pqrs, then  $S \Rightarrow T$  (Kiss, M, Somlai, Vizer '22).

# Results on Discrete Fuglede Conjecture (≤ 2 generators)

#### Cyclic groups $\mathbb{Z}_N$

- ② If  $N = p_1^2 p_2^2 p_3^2 p_4 \cdots p_k$ , then  $T \Rightarrow S$  (Łaba, Londner '25).
- If N = p<sup>m</sup>q<sup>n</sup> and one of the following holds:
   p < q and m ≤ 9 or n ≤ 6,</li>
   p<sup>m-2</sup> < q<sup>4</sup>,
  - then  $S \Rightarrow T$  (M. '22).
- If N = pqrs, then  $S \Rightarrow T$  (Kiss, M, Somlai, Vizer '22).

#### Two generators

- If  $G = \mathbb{Z}_{pq} \times \mathbb{Z}_{pq}$ , then  $T \Rightarrow S$  and  $S \Rightarrow T$  (Kiss, Somlai, Villano '23).
- ② If  $G = \mathbb{Z}_p \times \mathbb{Z}_{p^n}$ , then  $T \Rightarrow S$  and  $S \Rightarrow T$  (Zhang, '23)

# Results on Discrete Fuglede Conjecture (≥ 3 generators)

#### Three generators

- If  $G = \mathbb{Z}_8^3$ , then  $S \not\Rightarrow T$  (Kolountzakis, Matolcsi '06).
- ② If  $G = \mathbb{Z}_n^3$ , where 24 | n and n sufficiently large, then  $T \not\Rightarrow S$  (Farkas, Matolcsi, Móra '06).
- $\textbf{ 0} \ \ \mathsf{If} \ \ G = \mathbb{Z}_p^3 \ \ \mathsf{and} \ \ p \leq \mathsf{7}, \ \mathsf{then} \ \ S \Rightarrow \ T \ \ \mathsf{(Fallon, Mayeli, Villano)}$

# Results on Discrete Fuglede Conjecture (≥ 3 generators)

#### Three generators

- If  $G = \mathbb{Z}_8^3$ , then  $S \not\Rightarrow T$  (Kolountzakis, Matolcsi '06).
- ② If  $G = \mathbb{Z}_n^3$ , where 24 | n and n sufficiently large, then  $T \not\Rightarrow S$  (Farkas, Matolcsi, Móra '06).
- **3** If  $G = \mathbb{Z}_p^3$ , then  $T \Rightarrow S$  (Aten et al. '17).
- **①** If  $G = \mathbb{Z}_p^3$  and  $p \leq 7$ , then  $S \Rightarrow T$  (Fallon, Mayeli, Villano)

#### $\geq$ 4 generators

- If  $G = \mathbb{Z}_p^4$  and p odd, then  $S \not\Rightarrow T$  (Ferguson, Sothanaphan '20).
- ② If  $G = \mathbb{Z}_2^{10}$ , then  $S \not\Rightarrow T$  (Ferguson, Sothanaphan '20).
- **②** If  $G = \mathbb{Z}_2^6$ , then  $T \Rightarrow S$  and  $S \Rightarrow T$  (Ferguson, Sothanaphan '20).

# Results on Discrete Fuglede Conjecture (summary)

#### Fundamental Theorem on finite Abelian groups

If G is finite Abelian group, then

$$G \cong \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \times \mathbb{Z}_{d_k}$$

where  $d_1 \mid d_2 \mid \cdots \mid d_k$ .

# Results on Discrete Fuglede Conjecture (summary)

#### Fundamental Theorem on finite Abelian groups

If G is finite Abelian group, then

$$G \cong \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \times \mathbb{Z}_{d_k}$$

where  $d_1 \mid d_2 \mid \cdots \mid d_k$ .

#### Summary of results

- If G has at least 10 generators, then  $S \not\Rightarrow T$ .
- ② If G has odd order and at least 4 generators, then  $S \Rightarrow T$ .
- If G has at most 2 generators, we only have positive results so far.

# Discrete Fourier Analysis

 $\hat{G} = \{ \xi : G \to \mathbb{C} : \xi(x+y) = \xi(x)\xi(y), \forall x, y \in G \}.$  Since G finite,  $\xi(x)$  is a root of unity.

## Discrete Fourier Analysis

 $\hat{G} = \{ \xi : G \to \mathbb{C} : \xi(x+y) = \xi(x)\xi(y), \forall x, y \in G \}.$  Since G finite,  $\xi(x)$  is a root of unity.

#### Fourier transform

For 
$$f:G o\mathbb{C}$$
 define  $\hat{f}:\hat{G} o\mathbb{C}$  as

$$\mathbf{F}f(\xi) = \hat{f}(\xi) = \sum_{x \in \mathcal{G}} f(x)\xi(-x) = \langle f, \xi \rangle$$

# Discrete Fourier Analysis

 $\hat{G} = \{ \xi : G \to \mathbb{C} : \xi(x+y) = \xi(x)\xi(y), \forall x, y \in G \}.$  Since G finite,  $\xi(x)$  is a root of unity.

#### Fourier transform

For  $f:G o\mathbb{C}$  define  $\hat{f}:\hat{G} o\mathbb{C}$  as

$$\mathbf{F}f(\xi) = \hat{f}(\xi) = \sum f(x)\xi(-x) = \langle f, \xi \rangle$$

Inverse Fourier transform: 
$$f(x) = \frac{1}{|G|} \sum_{\xi \in \hat{G}} \hat{f}(\xi) \xi(x)$$
.

Convolution: 
$$f * g(x) = \sum_{y \in G} f(x - y)g(y)$$
.  $\widehat{f * g} = \hat{f} \cdot \hat{g}$ .

Parseval: 
$$\mathbf{U} = \frac{1}{\sqrt{|G|}} \mathbf{F}$$
 is unitary:  $|G| \sum_{x \in G} |f(x)|^2 = \sum_{\xi \in \hat{G}} |\hat{f}(\xi)|^2$ .

# Orthogonal characters

Restricting inner products on  $A \subset G$ :

$$\langle f, g \rangle_A = \sum_{x \in A} f(x) \overline{g(x)} = \langle f|_A, g|_A \rangle.$$

$$\xi,\psi\in\hat{\mathcal{G}}$$
 are orthogonal on A if  $\langle\xi,\psi\rangle_{A}=0$  (Notation:  $\xi\perp\psi.)$ 

## Orthogonal characters

Restricting inner products on  $A \subset G$ :

$$\langle f, g \rangle_A = \sum_{x \in A} f(x) \overline{g(x)} = \langle f|_A, g|_A \rangle.$$

 $\xi,\psi\in\hat{\mathcal{G}}$  are orthogonal on A if  $\left\langle \xi,\psi\right\rangle _{A}=0$  (Notation:  $\xi\perp\psi$ .)

 $B\subset \hat{G}$  is a set of orthogonal characters of  $A\subset G$ , if for every  $\xi\neq\psi$ ,  $\xi,\psi\in B$  we have

$$0 = \langle \xi, \psi \rangle_A = \sum_{\mathbf{x} \in A} (\xi \psi^{-1})(\mathbf{x}) = \hat{\mathbf{1}}_A(\xi \psi^{-1})$$

or equivalently,

$$B-B\subset Z(\hat{\mathbf{1}}_A)\cup\{0\}.$$

# Orthogonal characters

Restricting inner products on  $A \subset G$ :

$$\langle f, g \rangle_A = \sum_{x \in A} f(x) \overline{g(x)} = \langle f|_A, g|_A \rangle.$$

 $\xi,\psi\in\hat{G}$  are orthogonal on A if  $\left\langle \xi,\psi\right\rangle _{A}=0$  (Notation:  $\xi\perp\psi$ .)

 $B\subset \hat{G}$  is a set of orthogonal characters of  $A\subset G$ , if for every  $\xi\neq\psi$ ,  $\xi,\psi\in B$  we have

$$0 = \langle \xi, \psi \rangle_A = \sum_{x \in A} (\xi \psi^{-1})(x) = \hat{\mathbf{1}}_A(\xi \psi^{-1})$$

or equivalently,

$$B-B\subset Z(\hat{\mathbf{1}}_A)\cup\{0\}.$$

If in addition |B| = |A|, then B is a spectrum of A (it always holds  $|B| \le |A|$ ).

$$G=\mathbb{Z}_p^3$$

$$\langle y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

$$G=\mathbb{Z}_p^3$$

$$\langle \lambda, y \rangle = \lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3$$

We write  $x \perp y$  if  $\langle x, y \rangle = 0$ . It holds  $\dim_{\mathbb{F}_p} x^{\perp} = 2$ , if  $x \neq 0 = (0, 0, 0)$ .

We write  $x \perp y$  if  $\langle x, y \rangle = 0$ . It holds  $\dim_{\mathbb{F}_p} x^{\perp} = 2$ , if  $x \neq 0 = (0, 0, 0)$ .

If L is a line through O, then  $L^*$  denotes the punctured line  $L \setminus \{O\}$ .

We write  $x \perp y$  if  $\langle x, y \rangle = 0$ . It holds  $\dim_{\mathbb{F}_p} x^{\perp} = 2$ , if  $x \neq 0 = (0, 0, 0)$ .

If L is a line through O, then  $L^*$  denotes the punctured line  $L \setminus \{O\}$ .

# Zeros of $\widehat{\mathbf{1}}_A$

- **3**  $\widehat{\mathbf{1}}_A(x) = 0 \Rightarrow \widehat{\mathbf{1}}_A(\lambda x) = 0$ ,  $\forall \lambda \in \mathbb{Z}_p^*$ , using the action of  $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ . So,  $Z(\widehat{\mathbf{1}}_A)$  is a union of *punctured lines*.
- **9** If  $\widehat{\mathbf{1}}_A(x) = 0$ , then A is equidistributed with respect to the p parallel planes of  $x^{\perp}$ . In particular,  $p \mid |A|$ .

$$G=\mathbb{Z}_p^3$$
, Tiling $\Rightarrow$ Spectral (Aten et al. '17)

$$A\oplus \mathcal{T}=\mathbb{Z}_p^3\Rightarrow \mathbf{1}_A*\mathbf{1}_\mathcal{T}=\mathbf{1}_{\mathbb{Z}_p^3}\Rightarrow \widehat{\mathbf{1}}_A\widehat{\mathbf{1}}_\mathcal{T}=p^3\mathbf{1}_0$$
, hence

$$\operatorname{\mathsf{supp}}(\widehat{\mathbf{1}}_A)\cap\operatorname{\mathsf{supp}}(\widehat{\mathbf{1}}_T)=\{0\}.$$

(1)

$$A\oplus T=\mathbb{Z}_p^3\Rightarrow \mathbf{1}_A*\mathbf{1}_T=\mathbf{1}_{\mathbb{Z}_p^3}\Rightarrow \widehat{\mathbf{1}}_A\widehat{\mathbf{1}}_T=p^3\mathbf{1}_0$$
, hence

$$\operatorname{supp}(\widehat{\mathbf{1}}_A) \cap \operatorname{supp}(\widehat{\mathbf{1}}_T) = \{0\}. \tag{1}$$

If  $\operatorname{supp}(\widehat{1}_A) = \mathbb{Z}_p^3$ , then  $\operatorname{supp}(\widehat{1}_T) = \{0\}$ , which implies that  $T = \mathbb{Z}_p^3$  and A a singleton, and vice versa, if  $\operatorname{supp}(\widehat{1}_T) = \mathbb{Z}_p^3$ , we get  $A = \mathbb{Z}_p^3$ .

$$A\oplus T=\mathbb{Z}_p^3\Rightarrow \mathbf{1}_A*\mathbf{1}_T=\mathbf{1}_{\mathbb{Z}_p^3}\Rightarrow \widehat{\mathbf{1}}_A\widehat{\mathbf{1}}_T=p^3\mathbf{1}_0$$
, hence

$$\operatorname{supp}(\widehat{\mathbf{1}}_A) \cap \operatorname{supp}(\widehat{\mathbf{1}}_T) = \{0\}. \tag{1}$$

If  $\operatorname{supp}(\widehat{\mathbf{1}}_A)=\mathbb{Z}_p^3$ , then  $\operatorname{supp}(\widehat{\mathbf{1}}_T)=\{0\}$ , which implies that  $T=\mathbb{Z}_p^3$  and A a singleton, and vice versa, if  $\operatorname{supp}(\widehat{\mathbf{1}}_T)=\mathbb{Z}_p^3$ , we get  $A=\mathbb{Z}_p^3$ .

So, if we assume that A is nontrivial, so that |A|=p or  $p^2$ , we get that both  $\widehat{\mathbf{1}}_A$  and  $\widehat{\mathbf{1}}_T$  must vanish somewhere.

$$A\oplus T=\mathbb{Z}_p^3\Rightarrow \mathbf{1}_A*\mathbf{1}_T=\mathbf{1}_{\mathbb{Z}_p^3}\Rightarrow \widehat{\mathbf{1}}_A\widehat{\mathbf{1}}_T=p^3\mathbf{1}_0$$
, hence

$$\operatorname{supp}(\widehat{\mathbf{1}}_A) \cap \operatorname{supp}(\widehat{\mathbf{1}}_T) = \{0\}. \tag{1}$$

and vice versa, if supp $(\widehat{\mathbf{1}}_T) = \mathbb{Z}_p^3$ , we get  $A = \mathbb{Z}_p^3$ . So, if we assume that A is nontrivial, so that |A| = n or  $p^2$ , we get that both  $\widehat{\mathbf{1}}_A$  and  $\widehat{\mathbf{1}}_T$ .

If supp $(\widehat{\mathbf{1}}_A) = \mathbb{Z}_p^3$ , then supp $(\widehat{\mathbf{1}}_T) = \{0\}$ , which implies that  $T = \mathbb{Z}_p^3$  and A a singleton,

So, if we assume that A is nontrivial, so that |A|=p or  $p^2$ , we get that both  $\widehat{\mathbf{1}}_A$  and  $\widehat{\mathbf{1}}_T$  must vanish somewhere.

Suppose first that |A|=p. Consider a punctured line  $L^*\subseteq Z(\widehat{1}_A)$ . Then, the line L is a spectrum of A, as |A|=|L| and  $L-L=L\subseteq Z(\widehat{1}_A)\cup\{0\}$ .

$$A \oplus T = \mathbb{Z}_p^3 \Rightarrow \mathbf{1}_A * \mathbf{1}_T = \mathbf{1}_{\mathbb{Z}_p^3} \Rightarrow \widehat{\mathbf{1}}_A \widehat{\mathbf{1}}_T = p^3 \mathbf{1}_0$$
, hence 
$$\operatorname{supp}(\widehat{\mathbf{1}}_A) \cap \operatorname{supp}(\widehat{\mathbf{1}}_T) = \{0\}. \tag{1}$$

If  $\operatorname{supp}(\widehat{1}_A)=\mathbb{Z}_p^3$ , then  $\operatorname{supp}(\widehat{1}_T)=\{0\}$ , which implies that  $T=\mathbb{Z}_p^3$  and A a singleton, and vice versa, if  $\operatorname{supp}(\widehat{1}_T)=\mathbb{Z}_p^3$ , we get  $A=\mathbb{Z}_p^3$ .

So, if we assume that A is nontrivial, so that |A|=p or  $p^2$ , we get that both  $\widehat{\mathbf{1}}_A$  and  $\widehat{\mathbf{1}}_T$  must vanish somewhere.

Suppose first that |A|=p. Consider a punctured line  $L^*\subseteq Z(\widehat{\mathbf{1}}_A)$ . Then, the line L is a spectrum of A, as |A|=|L| and  $L-L=L\subseteq Z(\widehat{\mathbf{1}}_A)\cup\{0\}$ .

Finally, suppose that  $|A|=p^2$ , hence |T|=p. Consider a line L through two points of T; now let a plane H through the origin that is orthogonal to the direction of L. For any  $x\in H^*$ , we must have  $\widehat{\mathbf{1}}_T(x)\neq 0$ , since T is not equidistributed with respect to the planes parallel to  $x^\perp$  (the one containing L has at least 2 elements of T). Therefore, (1) yields  $H^*\subseteq Z(\widehat{\mathbf{1}}_A)$ , and H is a spectrum of A, since  $H-H=H\subseteq Z(\widehat{\mathbf{1}}_A)\cup\{0\}$  and |H|=|A|.

#### Delsarte's method

Let  $E \subset G$ , such that  $0 \in E$  and E = -E (forbidden set). We seek to maximize |B| such that  $(B - B) \cap E = \{0\}$ .

#### Delsarte's method

Let  $E \subset G$ , such that  $0 \in E$  and E = -E (forbidden set). We seek to maximize |B| such that  $(B - B) \cap E = \{0\}$ .

#### Witness function

A function  $h: G \to \mathbb{R}$  is called a *witness function* with respect to E if

- (a) h is even and  $h(x) \leq 0$ ,  $\forall x \in G \setminus E$ .
- (b)  $\hat{h} \geq 0$ ,  $\hat{h}(0) > 0$ .

#### Delsarte's method

Let  $E \subset G$ , such that  $0 \in E$  and E = -E (forbidden set). We seek to maximize |B| such that  $(B - B) \cap E = \{0\}$ .

#### Witness function

A function  $h:G\to \mathbb{R}$  is called a witness function with respect to E if

- (a) h is even and  $h(x) \le 0$ ,  $\forall x \in G \setminus E$ .
- (b)  $\hat{h} \geq 0$ ,  $\hat{h}(0) > 0$ .

#### Theorem (Delsarte '72)

With B, E, h as above, it holds

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)}.$$

## Spectrum

If there is a witness  $h:G o\mathbb{R}$  for  $E=G\setminus Z(\hat{\mathbf{1}}_A)$  such that

$$|G|\cdot\frac{h(0)}{\hat{h}(0)}<|A|,$$

then A is not spectral.

### Spectrum

If there is a witness  $h:G o\mathbb{R}$  for  $E=G\setminus Z(\hat{\mathbf{1}}_A)$  such that

$$|G|\cdot\frac{h(0)}{\hat{h}(0)}<|A|,$$

then A is not spectral.

#### Remark

$$h = \widehat{\mathbf{1}_A * \mathbf{1}_{-A}} = |\widehat{\mathbf{1}}_A|^2$$
 is a witness function for  $E$  which achieves equality, i. e.  $|G| \cdot h(0)/\widehat{h}(0) = |A|$ .

### Balanced functions

### Balanced (or ray-type) functions

A function  $h:G\to\mathbb{C}$  is called *balanced* if it is constant on every punctured line (i. e. it is homogeneous of degree 0).

#### Balanced functions

#### Balanced (or ray-type) functions

A function  $h:G\to\mathbb{C}$  is called *balanced* if it is constant on every punctured line (i. e. it is homogeneous of degree 0).

#### Balanced witness function

If h is a witness function for a union of lines E, then g is also a witness function for E, where

$$g(x) = \frac{1}{p-1} \sum_{\lambda \in \mathbb{Z}_+^*} h(\lambda x)$$

is in addition a balanced function.

# Passing to $\mathbf{P}\mathbb{F}_p^2$

 $[x:y:z]=[\lambda x:\lambda y:\lambda z]$  for  $\lambda \neq 0$ . The affine plane is included in  $\mathbf{P}\mathbb{F}_p^2$  via the map  $(x,y)\mapsto [x:y:1]$ ; for z=0 we get the line at infinity.

# Passing to $\mathbf{P}\mathbb{F}_p^2$

 $[x:y:z]=[\lambda x:\lambda y:\lambda z]$  for  $\lambda \neq 0$ . The affine plane is included in  $\mathbf{P}\mathbb{F}_p^2$  via the map  $(x,y)\mapsto [x:y:1]$ ; for z=0 we get the line at infinity.

| $\mathbb{Z}_p^3$ | $\mathbf{P}\mathbb{F}_p^2$ |
|------------------|----------------------------|
| punctured line   | point                      |
| punctured plane  | line                       |

# Passing to $\mathbf{P}\mathbb{F}_p^2$

 $[x:y:z]=[\lambda x:\lambda y:\lambda z]$  for  $\lambda \neq 0$ . The affine plane is included in  $\mathbf{P}\mathbb{F}_p^2$  via the map  $(x,y)\mapsto [x:y:1]$ ; for z=0 we get the line at infinity.

| $\mathbb{Z}_p^3$ | $\mathbf{P}\mathbb{F}_p^2$ |
|------------------|----------------------------|
| punctured line   | point                      |
| punctured plane  | line                       |

If S is a union of punctured lines in  $\mathbb{Z}_p^3$ , then the corresponding set of points in  $\mathbf{P}\mathbb{F}_p^2$  is denoted by  $\tilde{S}$ .

# Fourier analysis on the finite projective plane

If L is a line through O, then:

$$\hat{\mathbf{1}}_{\mathcal{O}} = \mathbf{1}_{\mathbb{Z}_p^3}, \quad \hat{\mathbf{1}}_{\mathcal{L}} = p\mathbf{1}_{\mathcal{L}^{\perp}}, \quad \hat{\mathbf{1}}_{\mathcal{L}^*} = p\mathbf{1}_{\mathcal{L}^{\perp}} - \mathbf{1}_{\mathbb{Z}_p^3}$$

# Fourier analysis on the finite projective plane

If L is a line through O, then:

$$\hat{\mathbf{1}}_O = \mathbf{1}_{\mathbb{Z}_p^3}, \quad \hat{\mathbf{1}}_L = \rho \mathbf{1}_{L^\perp}, \quad \hat{\mathbf{1}}_{L^*} = \rho \mathbf{1}_{L^\perp} - \mathbf{1}_{\mathbb{Z}_p^3}$$

#### Functions on projective plane

For 
$$f: \mathbb{Z}_p^3 \to \mathbb{C}$$
 balanced, define  $\tilde{f}: \mathbf{P}\mathbb{F}_p^2 \cup \{O\} \to \mathbb{C}$  as  $\tilde{f}([x:y:z]) = f(x,y,z)$ ,  $\tilde{f}(O) = f(O)$ . The Fourier transform is defined to satisfy  $\tilde{\tilde{f}} = \hat{\tilde{f}}$ .

# Fourier analysis on the finite projective plane

If L is a line through O, then:

$$\hat{\mathbf{1}}_{\mathcal{O}} = \mathbf{1}_{\mathbb{Z}_p^3}, \quad \hat{\mathbf{1}}_{\mathcal{L}} = p\mathbf{1}_{\mathcal{L}^{\perp}}, \quad \hat{\mathbf{1}}_{\mathcal{L}^*} = p\mathbf{1}_{\mathcal{L}^{\perp}} - \mathbf{1}_{\mathbb{Z}_p^3}$$

### Functions on projective plane

For  $f: \mathbb{Z}_p^3 \to \mathbb{C}$  balanced, define  $\tilde{f}: \mathbf{P}\mathbb{F}_p^2 \cup \{O\} \to \mathbb{C}$  as  $\tilde{f}([x:y:z]) = f(x,y,z)$ ,  $\tilde{f}(O) = f(O)$ . The Fourier transform is defined to satisfy  $\hat{f} = \hat{f}$ .

Abusing notation, we write O=[0:0:0]. For  $P=[x:y:z]\in \mathbf{P}\mathbb{F}_p^2$  define

$$P^{\perp} = \left\{ Q = [u : v : w] \in \mathbf{P}\mathbb{F}_{p}^{2} : xu + yv + zw = 0 \right\}.$$

$$\hat{\delta}_P = oldsymbol{p} \delta_{P^\perp} + oldsymbol{p} \delta_O - oldsymbol{1}, \quad \hat{\delta}_O = oldsymbol{1}.$$

## Blocking sets

### Definition

 $Z \subset \mathbf{P}\mathbb{F}_p^2$  is a *blocking set* if it intersects every line, but contains none.

## Blocking sets

#### Definition

 $Z \subset \mathbf{P}\mathbb{F}_p^2$  is a *blocking set* if it intersects every line, but contains none.

#### Facts:

- If Z is a blocking set, then so is  $Z^c$ .
- If  $A \subset \mathbb{Z}_p^3$  is spectral, then  $p \mid |A|$ . If |A| = p or  $p^2$ , then it tiles. If  $|A| > p^2$ , then  $A = \mathbb{Z}_p^3$ . Otherwise, |A| = pk, with 1 < k < p and

$$\widetilde{Z(\hat{\mathbf{1}}_A)} = \left\{ [x:y:z] \in \mathbf{P}\mathbb{F}_p^2 : \hat{\mathbf{1}}_A(x,y,z) = 0 \right\} = Z^c$$

is a blocking set, and so is  $Z=\mathrm{supp}\hat{\mathbf{1}}_A$  (Fallon, Mayeli, Villano '19).

• Let Z' be the smallest blocking set such that  $Z' \subset Z$ . Then (Bruen, Thas '77),

$$|Z'| \le p\sqrt{p} + 1.$$

Define

$$\tilde{h} = \delta_{Z'} + (|Z'| - p)\delta_O.$$

Define

$$\tilde{h} = \delta_{Z'} + (|Z'| - p)\delta_{\mathcal{O}}.$$

h is a witness function for  $E = \mathbb{Z}_p^3 \setminus Z(\hat{\mathbf{1}}_A)$ :

- The first condition ( $h \le 0$  outside E) is satisfied, as  $\operatorname{supp} \tilde{h} \subset Z \cup \{O\}$ .
- The second condition (positivity of  $\hat{h}$ ) is satisfied:

$$\hat{\hat{h}} = p \left( \sum_{P \in Z'} \delta_{P^{\perp}} + |Z'| \delta_{O} - 1 \right),$$

so that for  $Q \in \mathbf{P}\mathbb{F}_p^2$ 

$$\hat{ ilde{h}}(Q) = 
ho\Biggl(\sum_{P\in \mathcal{Z}'} \delta_{P^\perp}(Q) - 1\Biggr) = 
ho\Biggl(\sum_{P\in \mathcal{Z}'} \delta_{Q^\perp}(P) - 1\Biggr) = 
ho(|\mathcal{Z}'\cap Q^\perp| - 1) \geq 0$$

and  $\hat{h}(O) = p(|Z'| - 1) > 0$ .

Suppose that  $B \subset \hat{G}$  is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

Suppose that  $B \subset \hat{G}$  is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

When is the latter  $\langle |A| = pk$ ? Precisely when

$$k > p - \frac{p-1}{\sqrt{p}}$$
.

Suppose that  $B \subset \hat{G}$  is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

When is the latter  $\langle |A| = pk$ ? Precisely when

$$k>p-\frac{p-1}{\sqrt{p}}$$
.

### Theorem (M. '24)

If 
$$A \subset \mathbb{Z}_p^3$$
 and

$$p^2 - p\sqrt{p} + \sqrt{p} < |A| < p^2,$$

Suppose that  $B \subset \hat{G}$  is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

When is the latter  $\langle |A| = pk$ ? Precisely when

$$k > p - \frac{p-1}{\sqrt{p}}$$
.

#### Theorem (M. '24)

If  $A \subset \mathbb{Z}_p^3$  and

$$p^2 - p\sqrt{p} + \sqrt{p} < |A| < p^2,$$

then A is not spectral.

#### Remark

- It takes care about  $\sqrt{p}$  multiples of p between 2p and (p-1)p.
- Previously known only for k = p 2 or p 1 (Fallon, Mayeli, Villano '19).

## Work in progress - Open questions

**Q** Could Z' be smaller? At any rate, not smaller than  $\frac{3}{2}(p+1)$ ; in this case, if

$$p \cdot \frac{p^2 + 5p}{3p + 1} < |A| < p^2,$$

then A is not spectral, using the same method

- Could Z intersect every line in more than one points? Z either intersects every line at 3 points at least, or the points of A are distributed in k parallel planes, each having exactly p points of A.
- **1** If Z is a t-blocking set (i. e. it intersects every line at  $\geq t$  points), then

$$\tilde{h} = \delta_{Z'} + (|Z'| - tp)\delta_O$$

is a witness function with respect to  $E=\mathbb{Z}_p^3\setminus Z(\hat{\mathbf{1}}_A)$ , where Z' is a minimal t-blocking subset of Z. Applying Delsarte's method on h and using bounds on the size of minimal 3-blocking sets, yield that A is not spectral for  $\approx \sqrt{3p}$  values of k.

## Work in progress - Open questions

**Q** Could Z' be smaller? At any rate, not smaller than  $\frac{3}{2}(p+1)$ ; in this case, if

$$p \cdot \frac{p^2 + 5p}{3p + 1} < |A| < p^2,$$

then A is not spectral, using the same method

- Could Z intersect every line in more than one points? Z either intersects every line at 3 points at least, or the points of A are distributed in k parallel planes, each having exactly p points of A.
- **1** If Z is a t-blocking set (i. e. it intersects every line at  $\geq t$  points), then

$$\tilde{h} = \delta_{Z'} + (|Z'| - tp)\delta_{\mathcal{O}}$$

is a witness function with respect to  $E=\mathbb{Z}_p^3\setminus Z(\hat{\mathbf{1}}_A)$ , where Z' is a minimal t-blocking subset of Z. Applying Delsarte's method on h and using bounds on the size of minimal 3-blocking sets, yield that A is not spectral for  $\approx \sqrt{3p}$  values of k.

Thank you!