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Fuglede’s conjecture

Fuglede’s Conjecture (1974)

Tiling⇐⇒Spectrality in Rd

Spectrality̸⇒Tiling (Tao ’04)

Counterexample in R5; follows from the abundance of 6 × 6 complex Hadamard matrices.

This direction fails for d ≥ 3 (Kolountzakis, Matolcsi ’06)

.

Tiling̸⇒Spectrality (Kolountzakis, Matolcsi ’06)

Counterexample in R5; also fails for d ≥ 3 (Farkas, Matolcsi, Móra ’06).

Observation:

a counterexample of S ⇒ T or T ⇒ S in a finite Abelian group with d generators
can be lifted to a counterexample in Rd

Fuglede’s conjecture is still open for d = 1, 2. It is true for convex bodies (Lev, Matolcsi
’22).
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Discrete Fuglede Conjecture

Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G . Then A tiles G by translations if and only
if A is spectral.

A tiles if there is another subset T (the tiling complement of A), such that each element
of G can be expressed uniquely as a + t, with a ∈ A, t ∈ T . Notation: A⊕ T = G .

A is spectral if there is a set of characters B ⊂ Ĝ that form an orthogonal basis on L2(A).
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Results on Discrete Fuglede Conjecture (≤ 2 generators)

Cyclic groups ZN

1 If N = pm
1 p

n
2p3 · · · pk , then T ⇒ S ( Laba, Londner ’22).

2 If N = p2
1p

2
2p

2
3p4 · · · pk , then T ⇒ S ( Laba, Londner ’25).

3 If N = pmqn and one of the following holds:
p < q and m ≤ 9 or n ≤ 6,
pm−2 < q4,

then S ⇒ T (M. ’22).

4 If N = pqrs, then S ⇒ T (Kiss, M, Somlai, Vizer ’22).

5 If N = pnqr , then S ⇒ T (Zhang ’23)

Two generators

1 If G = Zpq × Zpq, then T ⇒ S and S ⇒ T (Kiss, Somlai, Villano ’23).

2 If G = Zp × Zpn , then T ⇒ S and S ⇒ T (Zhang, ’23)
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Results on Discrete Fuglede Conjecture (≥ 3 generators)

Three generators

1 If G = Z3
8, then S ̸⇒ T (Kolountzakis, Matolcsi ’06).

2 If G = Z3
n, where 24 | n and n sufficiently large, then T ̸⇒ S (Farkas, Matolcsi,

Móra ’06).

3 If G = Z3
p, then T ⇒ S (Aten et al. ’17).

4 If G = Z3
p and p ≤ 7, then S ⇒ T (Fallon, Mayeli, Villano)

≥ 4 generators

1 If G = Z4
p and p odd, then S ̸⇒ T (Ferguson, Sothanaphan ’20).

2 If G = Z10
2 , then S ̸⇒ T (Ferguson, Sothanaphan ’20).

3 If G = Z6
2, then T ⇒ S and S ⇒ T (Ferguson, Sothanaphan ’20).
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Results on Discrete Fuglede Conjecture (summary)

Fundamental Theorem on finite Abelian groups

If G is finite Abelian group, then

G ∼= Zd1 × Zd2 × · · · × Zdk ,

where d1 | d2 | · · · | dk .

Summary of results

1 If G has at least 10 generators, then S ̸⇒ T .

2 If G has odd order and at least 4 generators, then S ̸⇒ T .

3 If G has at most 2 generators, we only have positive results so far.
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Discrete Fourier Analysis

Ĝ = {ξ : G → C : ξ(x + y) = ξ(x)ξ(y),∀x , y ∈ G}. Since G finite, ξ(x) is a root of
unity.

Fourier transform

For f : G → C define f̂ : Ĝ → C as

Ff (ξ) = f̂ (ξ) =
∑
x∈G

f (x)ξ(−x) = ⟨f , ξ⟩

Inverse Fourier transform: f (x) = 1
|G |
∑

ξ∈Ĝ f̂ (ξ)ξ(x).

Convolution: f ∗ g(x) =
∑

y∈G f (x − y)g(y). f̂ ∗ g = f̂ · ĝ .

Parseval: U = 1√
|G |

F is unitary: |G |
∑

x∈G |f (x)|2 =
∑

ξ∈Ĝ |f̂ (ξ)|2.
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ξ∈Ĝ |f̂ (ξ)|2.



Discrete Fourier Analysis
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Parseval: U = 1√
|G |

F is unitary: |G |
∑

x∈G |f (x)|2 =
∑
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Orthogonal characters

Restricting inner products on A ⊂ G :

⟨f , g⟩A =
∑
x∈A

f (x)g(x) = ⟨f |A, g |A⟩.

ξ, ψ ∈ Ĝ are orthogonal on A if ⟨ξ, ψ⟩A = 0 (Notation: ξ ⊥ ψ.)

B ⊂ Ĝ is a set of orthogonal characters of A ⊂ G , if for every ξ ̸= ψ, ξ, ψ ∈ B we have

0 = ⟨ξ, ψ⟩A =
∑
x∈A

(ξψ−1)(x) = 1̂A(ξψ−1)

or equivalently,
B − B ⊂ Z(1̂A) ∪ {0}.

If in addition |B| = |A|, then B is a spectrum of A (it always holds |B| ≤ |A|).
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G = Z3
p

Fix an isomorphism G ∼= Ĝ , under the map x 7→ ξx , where ξx(y) = ζ
⟨x,y⟩
p , with

ζp = e2πi/p and
⟨x , y⟩ = x1y1 + x2y2 + x3y3.

We write x ⊥ y if ⟨x , y⟩ = 0. It holds dimFp x
⊥ = 2, if x ̸= O = (0, 0, 0).

If L is a line through O, then L∗ denotes the punctured line L \ {O}.

Zeros of 1̂A

1 1̂A(x) = 0 ⇒ 1̂A(λx) = 0, ∀λ ∈ Z∗
p , using the action of Gal(Q(ζp)/Q). So, Z(1̂A) is

a union of punctured lines.

2 If 1̂A(x) = 0, then A is equidistributed with respect to the p parallel planes of x⊥. In
particular, p | |A|.
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G = Z3
p, Tiling⇒Spectral (Aten et al. ’17)

A⊕ T = Z3
p ⇒ 1A ∗ 1T = 1Z3

p
⇒ 1̂A1̂T = p310, hence

supp(1̂A) ∩ supp(1̂T ) = {0}. (1)

If supp(1̂A) = Z3
p, then supp(1̂T ) = {0}, which implies that T = Z3

p and A a singleton,

and vice versa, if supp(1̂T ) = Z3
p, we get A = Z3

p.

So, if we assume that A is nontrivial, so that |A| = p or p2, we get that both 1̂A and 1̂T

must vanish somewhere.

Suppose first that |A| = p. Consider a punctured line L∗ ⊆ Z (1̂A). Then, the line L is a

spectrum of A, as |A| = |L| and L− L = L ⊆ Z(1̂A) ∪ {0}.

Finally, suppose that |A| = p2, hence |T | = p. Consider a line L through two points of
T ; now let a plane H through the origin that is orthogonal to the direction of L. For any
x ∈ H∗, we must have 1̂T (x) ̸= 0, since T is not equidistributed with respect to the
planes parallel to x⊥ (the one containing L has at least 2 elements of T ). Therefore, (1)

yields H∗ ⊆ Z (1̂A), and H is a spectrum of A, since H − H = H ⊆ Z(1̂A) ∪ {0} and
|H| = |A|.
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spectrum of A, as |A| = |L| and L− L = L ⊆ Z(1̂A) ∪ {0}.

Finally, suppose that |A| = p2, hence |T | = p. Consider a line L through two points of
T ; now let a plane H through the origin that is orthogonal to the direction of L. For any
x ∈ H∗, we must have 1̂T (x) ̸= 0, since T is not equidistributed with respect to the
planes parallel to x⊥ (the one containing L has at least 2 elements of T ). Therefore, (1)

yields H∗ ⊆ Z (1̂A), and H is a spectrum of A, since H − H = H ⊆ Z(1̂A) ∪ {0} and
|H| = |A|.



Delsarte’s method

Let E ⊂ G , such that 0 ∈ E and E = −E (forbidden set). We seek to maximize |B| such
that (B − B) ∩ E = {0}.

Witness function

A function h : G → R is called a witness function with respect to E if

(a) h is even and h(x) ≤ 0, ∀x ∈ G \ E .

(b) ĥ ≥ 0, ĥ(0) > 0.

Theorem (Delsarte ’72)

With B,E , h as above, it holds

|B| ≤ |G | · h(0)

ĥ(0)
.
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Spectrum

If there is a witness h : G → R for E = G \ Z(1̂A) such that

|G | · h(0)

ĥ(0)
< |A|,

then A is not spectral.

Remark

h = ̂1A ∗ 1−A = |1̂A|2 is a witness function for E which achieves equality, i. e.
|G | · h(0)/ĥ(0) = |A|.
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Balanced functions

Balanced (or ray-type) functions

A function h : G → C is called balanced if it is constant on every punctured line (i. e. it
is homogeneous of degree 0).

Balanced witness function

If h is a witness function for a union of lines E , then g is also a witness function for E ,
where

g(x) =
1

p − 1

∑
λ∈Z∗

p

h(λx)

is in addition a balanced function.
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Passing to PF2
p

[x : y : z] = [λx : λy : λz] for λ ̸= 0. The affine plane is included in PF2
p via the map

(x , y) 7→ [x : y : 1]; for z = 0 we get the line at infinity.

Z3
p PF2

p

punctured line point
punctured plane line

If S is a union of punctured lines in Z3
p, then the corresponding set of points in PF2

p is

denoted by S̃ .
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Fourier analysis on the finite projective plane

If L is a line through O, then:

1̂O = 1Z3
p
, 1̂L = p1L⊥ , 1̂L∗ = p1L⊥ − 1Z3

p

Functions on projective plane

For f : Z3
p → C balanced, define f̃ : PF2

p ∪ {O} → C as f̃ ([x : y : z]) = f (x , y , z),

f̃ (O) = f (O). The Fourier transform is defined to satisfy ˜̂f = ˆ̃f .

Abusing notation, we write O = [0 : 0 : 0]. For P = [x : y : z] ∈ PF2
p define

P⊥ =
{
Q = [u : v : w ] ∈ PF2

p : xu + yv + zw = 0
}
.

δ̂P = pδP⊥ + pδO − 1, δ̂O = 1.
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Blocking sets

Definition

Z ⊂ PF2
p is a blocking set if it intersects every line, but contains none.

Facts:

If Z is a blocking set, then so is Z c .

If A ⊂ Z3
p is spectral, then p | |A|. If |A| = p or p2, then it tiles. If |A| > p2, then

A = Z3
p. Otherwise, |A| = pk, with 1 < k < p and

Z̃(1̂A) =
{

[x : y : z] ∈ PF2
p : 1̂A(x , y , z) = 0

}
= Z c

is a blocking set, and so is Z = ˜supp1̂A (Fallon, Mayeli, Villano ’19).

Let Z ′ be the smallest blocking set such that Z ′ ⊂ Z . Then (Bruen, Thas ’77),

|Z ′| ≤ p
√
p + 1.
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Finding the witness function

Define

h̃ = δZ ′ + (|Z ′| − p)δO .

h is a witness function for E = Z3
p \ Z(1̂A):

The first condition (h ≤ 0 outside E ) is satisfied, as supph̃ ⊂ Z ∪ {O}.

The second condition (positivity of ĥ) is satisfied:

ˆ̃h = p

(∑
P∈Z ′

δP⊥ + |Z ′|δO − 1

)
,

so that for Q ∈ PF2
p

ˆ̃h(Q) = p

(∑
P∈Z ′

δP⊥(Q) − 1

)
= p

(∑
P∈Z ′

δQ⊥(P) − 1

)
= p(|Z ′ ∩ Q⊥| − 1) ≥ 0

and ˆ̃h(O) = p(|Z ′| − 1) > 0.
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Finding the witness function

Suppose that B ⊂ Ĝ is a (maximal) set of pairwise orthogonal characters on A.
Delsarte’s method with witness function h gives us

|B| ≤ |G | · h(0)

ĥ(0)
= p3 · h̃(O)

ˆ̃h(O)
= p3 · |Z ′| − p

p(|Z ′| − 1)
= p2

(
1 − p − 1

|Z ′| − 1

)
.

When is the latter < |A| = pk? Precisely when

k > p − p − 1
√
p
.

Theorem (M. ’24)

If A ⊂ Z3
p and

p2 − p
√
p +

√
p < |A| < p2,

then A is not spectral.

Remark

It takes care about
√
p multiples of p between 2p and (p − 1)p.

Previously known only for k = p − 2 or p − 1 (Fallon, Mayeli, Villano ’19).
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Work in progress - Open questions

1 Could Z ′ be smaller? At any rate, not smaller than 3
2
(p + 1); in this case, if

p · p
2 + 5p

3p + 1
< |A| < p2,

then A is not spectral, using the same method

2 Could Z intersect every line in more than one points? Z either intersects every line
at 3 points at least, or the points of A are distributed in k parallel planes, each
having exactly p points of A.

3 If Z is a t-blocking set (i. e. it intersects every line at ≥ t points), then

h̃ = δZ ′ + (|Z ′| − tp)δO

is a witness function with respect to E = Z3
p \ Z(1̂A), where Z ′ is a minimal

t-blocking subset of Z . Applying Delsarte’s method on h and using bounds on the
size of minimal 3-blocking sets, yield that A is not spectral for ≈

√
3p values of k.

Thank you!
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