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Fuglede's conjecture

Fuglede's Conjecture (1974)

Tiling<=Spectrality in R?

Spectrality7 Tiling (Tao '04)

Counterexample in R%; follows from the abundance of 6 x 6 complex Hadamard matrices.

This direction fails for d > 3 (Kolountzakis, Matolcsi '06).

Tiling-Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in R®; also fails for d > 3 (Farkas, Matolcsi, Mdra '06).

Observation:

a counterexample of S = T or T = S in a finite Abelian group with d generators
can be lifted to a counterexample in RY

Fuglede's conjecture is still open for d = 1,2. It is true for convex bodies (Lev, Matolcsi
'22).
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Discrete Fuglede Conjecture

Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only
if A is spectral.

A tiles if there is another subset T (the tiling complement of A), such that each element
of G can be expressed uniquely as a+ t, with a € A, t € T. Notation: A& T = G.

A is spectral if there is a set of characters B C G that form an orthogonal basis on L2(A).
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Cyclic groups Zy
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Cyclic groups Zy

Q If N=p"pips--pk, then T = S (Laba, Londner '22).

Q If N = p?p2p3ps- - - pk, then T = S (Laba, Londner '25).
Q If N=p"q" and one of the following holds:
o p<gand m<9orn<6,
° pm72 < q4v
then S = T (M. '22).
Q If N = pgrs, then S = T (Kiss, M, Somlai, Vizer '22).

@ If N=p"gr, then S = T (Zhang '23)

Two generators
Q If G="Zpg X Zpg, then T = S and S = T (Kiss, Somlai, Villano '23).
@ If G=7Zp X Zpn, then T = S and S = T (Zhang, '23)




Results on Discrete Fuglede Conjecture (> 3 generators)

Three generators

@ If G =73, then S % T (Kolountzakis, Matolcsi '06).

Q If G =73, where 24 | n and n sufficiently large, then T % S (Farkas, Matolcsi,
Mdra '06).

Q If G =17}, then T = S (Aten et al. '17).

QIfG= Zf, and p <7, then S = T (Fallon, Mayeli, Villano)




Results on Discrete Fuglede Conjecture (> 3 generators)

Three generators

@ If G =73, then S % T (Kolountzakis, Matolcsi '06).

Q If G =73, where 24 | n and n sufficiently large, then T % S (Farkas, Matolcsi,
Mdra '06).

Q If G =17}, then T = S (Aten et al. '17).

QIfG= Z?, and p <7, then S = T (Fallon, Mayeli, Villano)

> 4 generators

O If G =1Z; and p odd, then S # T (Ferguson, Sothanaphan '20).
Q If G =7Z3°, then S % T (Ferguson, Sothanaphan '20).
QIfG=275then T=Sand S=T (Ferguson, Sothanaphan '20).
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Results on Discrete Fuglede Conjecture (summary)

Fundamental Theorem on finite Abelian groups

If G is finite Abelian group, then
G%’Zdl XZdz X ~~~><de7

whered1|d2|--~|dk.

Summary of results
Q If G has at least 10 generators, then S # T.
@ If G has odd order and at least 4 generators, then S A T.

@ If G has at most 2 generators, we only have positive results so far.
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Discrete Fourier Analysis

G={¢:G o C:¢&(x+y)=E(x)E(y),Vx,y € G}. Since G finite, £(x) is a root of
unity.

Fourier transform

For f : G — C define f : G — C as

FF(&) = (&) =D F(x)E(—x) = (f,£)

xeG

Inverse Fourier transform: f(x) = ‘1?‘ Decé F()E(x).

Convolution: £ g(x) = cc f(x —y)g(y). Frg=1&.

Parseval: U = \/l‘aF is unitary: |G|, oIf(x)]P = deé\F(g)P.
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£,1 € G are orthogonal on A if (&,1) , = 0 (Notation: £ L 4).)
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(f.g)a =D f(x)g(x) = (Fla, gla)-

xX€EA

£,1 € G are orthogonal on A if (&,1) , = 0 (Notation: £ L 4).)

B C G is a set of orthogonal characters of A C G, if for every £ # 1, £,% € B we have

0= (&)= > (¥ H(x) =1aéy™)

X€EA

or equivalently, R
B—-BC Z(14)uU{0}.

If in addition |B| = |A|, then B is a spectrum of A (it always holds |B| < |A|).



B

Fix an isomorphism G = G, under the map x > &,, where &,(y) = (f,x’y), with
= e?™/P and
(x,y) = xiy1 + xey + x3ys.
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— 73
G =13

Fix an isomorphism G 22 G, under the map x — &, where & (y) = C,SX’”, with

¢, = €*™/P and
(x,y) = x1y1 + Xy + x3y3.

We write x L y if (x,y) = 0. It holds dimp, xt =2,if x# 0=(0,0,0).

If Lis a line through O, then L* denotes the punctured line L\ {O}.

Zeros of TA

Q 1a(x) =0=T1a(Ax) =0, VA € Z,, using the action of Gal(Q(()/Q). So, Z(1a) is
a union of punctured lines.

Q If IA(X) =0, then A is equidistributed with respect to the p parallel planes of x. In
particular, p | |Al.




AT = Zf’, = 1ax1l7 = lzg = TATT = p°1p, hence

supp(14) N supp(17) = {0}. (1)



G = 73, Tiling=Spectral (Aten et al. '17)
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If supp(1a) = Z3, then supp(17) = {0}, which implies that T = Z} and A a singleton,
and vice versa, if supp(17) = Z}, we get A =72,
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G = Z3, Tiling=Spectral (Aten et al. '17)

AP T = Zf, =1ax17 = ].Zg = TAIT = p310, hence
supp(1) N supp(17) = {0}. (1)

If supp(1a) = Z3, then supp(17) = {0}, which implies that T = Z} and A a singleton,
and vice versa, if supp(17) = Z}, we get A =72,

So, if we assume that A is nontrivial, so that |A| = p or p2, we get that both iA and ir
must vanish somewhere.

Suppose first that |A| = p. Consider a punctured line L* C Z(14). Then, the line L is a
spectrum of A, as |A] = |L| and L — L =L C Z(14) U{0}.

Finally, suppose that |A| = p?, hence | T| = p. Consider a line L through two points of
T; now let a plane H through the origin that is orthogonal to the direction of L. For any
x € H*, we must have 17(x) # 0, since T is not equidistributed with respect to the
planes parallel to x* (the one containing L has at least 2 elements of T). Therefore, (1)
yields H* C Z(1,), and H is a spectrum of A, since H — H = H C Z(14) U {0} and

|H| = [Al.



Let E C G, such that 0 € E and E = —E (forbidden set). We seek to maximize |B| such
that (B — B) N E = {0}.
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Delsarte’'s method

Let E C G, such that 0 € E and E = —E (forbidden set). We seek to maximize |B| such
that (B — B) N E = {0}.

A function h: G — R is called a witness function with respect to E if
(a) hiseven and h(x) <0, Vx € G\ E.
(b) h >0, h(0) > 0.

Theorem (Delsarte '72)

With B, E, h as above, it holds
h(0)

R
A(0)




If there is a witness h: G — R for E = G\ Z(14) such that

~h(0)
h(0)

6] <A,

then A is not spectral.




Spectrum

If there is a witness h: G — R for E = G\ Z(14) such that

~h(0)
h(0)

Gl <A,

then A is not spectral.

h= IA/*I\:A = |14 is a witness function for E which achieves equality, i. e.
G| - h(0)/h(0) = [A.




Balanced functions

Balanced (or ray-type) functions

A function h: G — C is called balanced if it is constant on every punctured line (i. e. it
is homogeneous of degree 0).




Balanced functions

Balanced (or ray-type) functions

A function h: G — C is called balanced if it is constant on every punctured line (i. e. it
is homogeneous of degree 0).

Balanced witness function

If his a witness function for a union of lines E, then g is also a witness function for E,
where

£0) = 527 3 hOW)

AEZ;

is in addition a balanced function.




x:y:z] =[Ax:Ay: Az] for A # 0. The affine plane is included in PF2 via the map
P
(x,¥) ¥~ [x:y:1]; for z =0 we get the line at infinity.



Passing to PF2

x:y:z]=[Ax:Ay: Az] for . The affine plane is included in via the map
Ax 1 Ay @ Az] for A # 0. The affi | is included i PF,% ia th
(x,y) — [x:y :1]; for z =0 we get the line at infinity.

3 2
7, PF;
punctured line | point
punctured plane | line




Passing to PF2

x:y:z]=[Ax:Ay: Az] for . The affine plane is included in via the map
Ax 1 Ay @ Az] for A # 0. The affi | is included i PF,ZJ ia th
(x,y) — [x:y :1]; for z =0 we get the line at infinity.

3 2
7, PF;
punctured line | point
punctured plane | line

If S is a union of punctured lines in Z3, then the corresponding set of points in PIF,% is
denoted by S,



Fourier analysis on the finite projective plane _

If Lis a line through O, then:

io = 1237 il_ = plLl, i[_* = plLJ_ - ]'Zf,




Fourier analysis on the finite projective plane

If Lis a line through O, then:

io = IZE’ il_ = plLL, i[_* = plLL — ].Zg

Functions on projective plane
For f : Z} — C balanced, define f : PF2U {0} — C as fN'(N[x y z])
f

(0) = f(0). The Fourier transform is defined to satisfy 7 = 7.




Fourier analysis on the finite projective plane

If Lis a line through O, then:

io = 1237 il_ = plLL, i[_* = plLL — ].Zg

P

Functions on projective plane

For f : Z} — C balanced, define f : PF2U {0} — C as f([x : y : z]) = f(x,y, 2),
f.

(0) = f(0). The Fourier transform is defined to satisfy f =

Abusing notation, we write O = [0:0:0]. For P =[x : y : z] € PF? define

Pl:{QZ[U:V:W]EPFi:XU+yV+ZW:0}.

6p = ppr +pdo—1, bo=1.




Blocking sets

Definition

Z C PIF;‘; is a blocking set if it intersects every line, but contains none.




Blocking sets

Definition

ZC PIE‘;‘; is a blocking set if it intersects every line, but contains none.

Facts:
o If Z is a blocking set, then so is Z°.

o If AC Z} is spectral, then p | |A|. If |A| = p or p?, then it tiles. If |A| > p?, then
A = Z3. Otherwise, |A| = pk, with 1 < k < p and
Z(1a) = {[X cy 2zl €PFS:a(x,y,2) = O} =Z°
is a blocking set, and so is Z = suppla (Fallon, Mayeli, Villano '19).
@ Let Z’' be the smallest blocking set such that Z' C Z. Then (Bruen, Thas '77),

|Z'| < pyp+1.



Define

h=6+(Z'| - p)do.




Finding the witness function

Define

h=6z+(Z'| - p)do.

h is a witness function for E = Z3 \ Z(14):
e The first condition (h < 0 outside E) is satisfied, as supph C Z U {O}.

e The second condition (positivity of h) is satisfied:

E—p<z Spu +z’|501>,
pPez’
so that for Q € PF3

Z(Q) =p<2 551 (Q) — 1) =p<z 5QL(P)—1> =p(|ZNnQ*F|-1)>0

pPez’ pPez’

and h(0) = p(|Z'| — 1) > .




Finding the witness function

Suppose that B C G is a (maximal) set of pairwise orthogonal characters on A.
Delsarte's method with witness function h gives us

ho) _ o BO) _ .. |Z'|—p):p2<1 p—l).

Br=lel o) — plZ1-1 TiZ1-1

12" -1

P
—~

(=]
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Finding the witness function
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Delsarte's method with witness function h gives us
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Finding the witness function

Suppose that B C G is a (maximal) set of pairwise orthogonal characters on A.
Delsarte's method with witness function h gives us

h(0) _ 5 hO) _ 5 [Z]-p _ of, p-1
EREE o _, )—p(l )

TORRNTT) p(1Z-1 Z-1

When is the latter < |A| = pk? Precisely when

-1
k>pfp7.

/P

Theorem (M. '24)

If AC Z} and
P —pVP+ VP <Al <P,

then A is not spectral.




Finding the witness function

Suppose that B C G is a (maximal) set of pairwise orthogonal characters on A.
Delsarte's method with witness function h gives us

ho) _ s h(O) 5 |Z'|-p 2 p—1
Bl <|G|- ==~ =p"3 =p - =p|\l-—557— )
B30 =P ho) P R D) 211
When is the latter < |A| = pk? Precisely when
-1
k>p———.
VP

Theorem (M. '24)
If AC Z} and

P —pVP+ VP <Al <P,

then A is not spectral.
o

o |t takes care about \/p multiples of p between 2p and (p — 1)p.

@ Previously known only for k = p —2 or p — 1 (Fallon, Mayeli, Villano '19).




Work in progress - Open questions

O Could Z’' be smaller? At any rate, not smaller than %(p—|— 1); in this case, if

2
p°+5p 2

e < |A| < P,
i1 [Al < p

then A is not spectral, using the same method

@ Could Z intersect every line in more than one points? Z either intersects every line
at 3 points at least, or the points of A are distributed in k parallel planes, each
having exactly p points of A.

@ If Z is a t-blocking set (i. e. it intersects every line at > t points), then
h=6,+(1Z'| - tp)do

is a witness function with respect to E = Z \ Z(14), where Z' is a minimal
t-blocking subset of Z. Applying Delsarte’s method on h and using bounds on the
size of minimal 3-blocking sets, yield that A is not spectral for ~ /3p values of k.
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O Could Z’' be smaller? At any rate, not smaller than %(p—|— 1); in this case, if

2
p°+5p 2

e < |A| < P,
i1 [Al < p

then A is not spectral, using the same method

@ Could Z intersect every line in more than one points? Z either intersects every line
at 3 points at least, or the points of A are distributed in k parallel planes, each
having exactly p points of A.

@ If Z is a t-blocking set (i. e. it intersects every line at > t points), then
h=6,+(1Z'| - tp)do

is a witness function with respect to E = Z \ Z(14), where Z' is a minimal
t-blocking subset of Z. Applying Delsarte’s method on h and using bounds on the
size of minimal 3-blocking sets, yield that A is not spectral for ~ /3p values of k.

Thank you!




